Water-insoluble Esters and Amides Nicotinic Acid.

By C. O. BADGETT, RAYMOND C. PROVOST, JR., CLYDE L. OGG AND C. F. WOODWARD

Attention has been directed2 to the need for water-insoluble forms of nicotinic acid, thiamin, and riboflavin for use in the practical fortificaion of cereals, such as corn grits and white rice, vhich are often rinsed prior to cooking. Although nicotinic acid and nicotinamide have been successfully employed in the fortification of wheat flour, their water solubility makes them disadvantageous for enrichment of the food products mentioned above.

The present paper describes the preparation of n-alkyl esters and N-(n-alkyl) amides of nicotinic acid in an attempt to obtain derivatives having the desired water-insolubility and biological activity. The N-phenyl-, N-cyclohexyl- and N-(2-pyridyl)-nicotinamides were also prepared for biological comparison.

n-Alkyl esters of nicotinic acid, in which the length of the alkyl group ranged from C2 to C18, were prepared by the reaction of the corresponding alcohols with nicotinyl chloride.3 N-(n-Alkyl) nicotinamides, in which the alkyl group ranges from C6 to C18, were prepared by the following methods: reaction of n-alkyl amines with nicotinyl chloride,3 aminolysis of nicotinic esters,4,5 and the reaction of amines with nicotinic acid.5 The latter two methods were recently employed⁵ in the synthesis of the following N-substituted nicotinamides for antispasmodic and anticon-

(1) One of the laboratories of the Bureau of Agricultural and Industrial Chemistry, Agricultural Research Administration, United States Department of Agriculture. Article not copyrighted.
(2) Gunderson, Science, 98, 277 (1943).

(3) Hukusima, J. Chem. Soc., Japan, 61, 121 (1940)

(4) Pictet and Sussdorff, Arch. sci. phys. nat., Genèvè, [4] 5, 118; Them. Zentr., 69, 1, 677 (1898).

(5) Billman and Rendall, This Journal, 66, 540 (1944).

vulsant tests: benzyl-, n-amyl-, allyl- and dibutylaminopropyl-.

Published data indicate that methyl nicotinate is active in bacterial metabolism, whereas the ethyl-, n-propyl- and n-butyl esters of nicotinic acid are active in animal metabolism and exhibit some specificity as essential factors for bacteria. N-Methyl and N,N-diethyl nicotinamide were active in tests on dogs and on dysentery bacilli.6

Preliminary biological data, obtained by C. A. Elvehjem, L. J. Teply and W. A. Krehl, on several of the higher amides and esters prepared in this study are summarized in Tables I and II. Although most of these derivatives are relatively inactive in Lactobacillus arabinosus, there is some indication that the esters are active in animal metabolism. Since N-phenyl nicotinamide was about two-thirds as active as nicotinic acid in dog assays, it is believed that the N-alkyl nicotinamides will also be active under similar test conditions.

As was to be expected, the higher n-alkyl esters and amides of nicotinic acid were insoluble in water. Since the rinsing of fortified cereals would not result in saturation of the wash water with the vitamin, the solubility data herein reported are indicative of the maximum vitamin loss that could be incurred. The actual loss in practice would probably be far less than the saturation value.

Experimental

The preparation of n-octyl nicotinate is representative of the method employed in the preparation of the fourteen

⁽⁶⁾ For an excellent review of compounds functionally related to nicotinic acid, see Elvehjem and Teply, Chem. Rev., [4] 33, 185 (1943).

TABLE I

n-ALKYL NICO	INIC ACID	ESTERS

							Analyses, %———			
NT-	n-Alkyl group	Boiling 1				Melting point		bon	Hydro	
No.		°C.	Mm.	Density254	H 25D	of picrate, °C.	Calcd.	Found	Calcd.	Found
1	Ethyl ^a	88	3.5	1.1047	1.5008	147.5-148.0				
2	Propyl ^a	72-73	0.2	1.0711	1.4964	129.5-130.0	65.45	65.41	6.66	6.82
3	Butyl ^a	75-76	. 15	1.0471	1.4933	113.5-114.0	67.08	66.88	7.30	6.99
4	Amyla	93	. 22	1.0217	1.4847	98.5-99.0	68.39	68.76	7.77	8.15
5	Hexyl	103-104	.2	1.0133	1.4897	87.5-88.5	69.56	69.35	8.21	8.27
6	Heptyl	116	. 19	0.9939	1.4846	92.5-93.5	70.58	70.55	8.59	8.93
7	Octyl	116-117	. 2	. 9871	1.4856	89.5-90.0	71.49	71.43	8.93	9.18
8	Nonyl	133.5	. 28	. 9852	1.4853	99.5-100.0	72.25	71.83	9.29	9.42
9	Decyl	140-141	.25	. 9714	1.4847	94.0-94.5	72.96	72.45	9.56	9.06
10	Undecyl	159-160	. 5	. 9606	1.4829	103.5-103.8	73.60	74.09	9.81	9.69
11	Dodecyl	F. p., 22.7	7	. 9356	1.4750	99.5-100.5	74.18	74.16	10.03	9.81
12	Tetradecyl	М р., 40.	2-40.8			102.4-103.0	75.18	75.12	10.41	10.10
13	Hexadecyl	M. p., 46.	7-47.0			103.0-103.5	76.03	76.17	10.73	10.69
14	Octadecyl	M. p., 55.	3-55.8			107.7-107.9	76.75	76.59	11.00	10.98

			. ~		at 2	5°C.₺	compared with that of nicotinic acid, on— L. arabinosus,		
	Nit	rogen	llyses, %————————————————————————————————————	itrogen		Nicotinic acid equivalent, d			
No.	Calcd.	Found	Calcd.	Found	g.	g.	L. dravinosas,	Dogs	
1	• •		14.73	14.36	5.60	4.58	7.5	Equal	
2	8.48	8.57	14.21	13.83	0.950	0.708	5.2	· e	
3	7.80	8.21	13.72	13.27	.261	.179	5.1		
4	7.25	7.51	13.26	12.98	.081	.052	5.3	14.5	
5	6.76	6.62	12.74	12.96	.046	.027	4.8	• •	
6	6.33	6.86	12.44	12.29	.040	.022	4.2		
7	5.95	5.93	12.06	11.68	.019	.010	4.0		
8	5.62	5.92	11.71	11.62	.020	.010	• • •		
9	5.32	5.03	11.39	11.38	.017	.008			
10	5.05	4.96	11.06	10.80	.017	.007			
11	4.81	4.59	10.76	10.33	.015	.006	2.5	Fair	
12	4.38	4.33	10.21	10.23	.012	.005			
13	4.03	4.09	9.71	9.71	.013	.005		•	
14	3.73	3.70	9.26	9.41	.014	.005	•••	•	

Solute in 100 cc. solution

esters whose properties are summarized in Table I. All melting points reported herein are corrected values.

n-Octyl Nicotinate.—Thionyl chloride, 35.7 g., was added with stirring during twenty minutes to a cooled mixture of 36.9 g. of nicotinic acid and 47.4 g. of pyridine in a 500-cc., 3-necked flask equipped with a dropping funnel, a reflux condenser, and a mercury-sealed stirrer. The reaction mixture was then heated for one hour at 100°. Octanol-1, 42.9 g., was added over a period of five minutes, and the resulting mixture was heated at 95-100° for three hours. The reaction mixture was poured into 500 cc. of water and made slightly alkaline with dilute ammonium hydroxide. The water-insoluble portion was then separated and washed in turn with dilute sodium carbonate solution and water. The original water solution, from which the ester had been separated, was then extracted twice with 100-cc. portions of diethyl ether. The combined ether extract was added to the washed ester fraction, and the solution was dried over anhydrous sodium sulfate. After the drying agent was removed by filtration, the filtrate was fractionally distilled under reduced pressure. The 46.2-g. portion distilling at 116° (0.18 mm.) was pure n-octyl nicotinate and represented 65.5% of the theoretical yield; n²⁵D 1.4856, d²⁵4 0.9871. Melting point of picrate was 89.5-90.0°.

In the preparation of C₁₄, C₁₆ and C₁₈ esters, an excess of nicotinyl chloride was employed to ensure practically complete esterification of the alcohol and minimize the difficulty encountered in separating the ester from any unreacted alcohol by fractional distillation. To ensure com-

plete separation of these higher esters from the corresponding alcohols, the dried ether extract, obtained as described above, was saturated with dry hydrogen chloride, and the precipitated ester hydrochloride was filtered and washed with cold ether. The ester obtained by subsequent treatment of the hydrochloride with sodium carbonate solution was free of the alcohol employed in the esterification.

Biological activity 6 as

The N-(n-alkyl)-nicotinamides (Table II) were prepared by one or more of the following three methods. The detailed procedures for the preparation of N-(n-decyl)-nicotinamide are applicable to all amides herein reported.

N-(n-Decyl)-nicotinamide, Method A.—A mixture consisting of 24.6 g. of nicotinic acid and 31.4 g. of n-decylamine was heated at 200-235° for fifteen minutes. The reaction mixture was then made slightly alkaline by the addition of sodium carbonate solution while a temperature of 75° was maintained. The aqueous layer was withdrawn, the residual liquid N-(n-decyl)-nicotinamide layer was washed with hot water, and the crude amide was then separated and dried in a vacuum desiccator. The dried product was dissolved in chloroform, and the solution was clarified by boiling with activated carbon and filtering. The amide was precipitated from the warm filtrate by the addition of petroleum ether. The solution was then cooled and the crystalline product filtered. The 43.5 g. of material melting at 64.0-66.0° represented 83.0% of the theoretical yield. Repeated recrystallization of the amide from a mixture of petroleum ether and chloroform yielded

^a Previously reported. ^b With an accuracy of ±0.005 g. ^c Molar basis. ^d Solubility of nicotinic acid is 1.77 g. ^c Indicates no test.

TABLE II
N-SUBSTITUTED NICOTINAMIDES

					Analyses.	%	
No.	Substituent	Melting point,	Melting point of picrate, °C.	Carb Calcd.		Hydro Calcd.	Found
1	n-Hexyl	44.6-44.9	147.1-147.6	69.86	69.70	8.79	8.70
2	n-Heptyl	51.8-52.1	151.2-151.6	70.87	70.50	9.16	9.03
3	n-Octyl	61.4-61.9	144.6-144.9	71.75	71.62	9.47	9.34
4	n-Nonyl	73.1-73.4	147.9-148.4	72.54	72.59	9.74	9.79
5	n-Decyl	72.1-72.4	151.0-151.6	73.23	72.77	10.00	9.74
6	n-Undecyl	71.1-71.8	152.3-152.8	73.86	73.82	10.22	9.97
7	n-Dodecvl	77.6-77.8	153.5-154.0	74.43	74.18	10.38	10.13
8-	n-Tridecyl	81.8-82.2	153.9-154.2	74.94	74.60	10.60	10.34
9	n-Tetradecyl	80.9-81.2	154.2-154.5	75.42	74.97	10.77	10.29
10	n-Hexadecyl	87.7-87.9	155.4-155.8	76.25	76.38	11.06	10.66
11	n-Octadecyl	91.7-92.0	155.1-155.7	76.95	76.63	11.29	11.29
12	Phenyla	116.8-117.2	186.2-186.9	72.71	72.40	5.09	5.67
13	Cyclohexyl	140.0-140.4	198.8-199.1	70.55	70.49	7.90	7.43
14	2-Pyridyl	136.4-136.6	$225.3 - 225.7^{b}$	66.32	66.30	4.55	4.60

		Analy	ses, %		Solute in 10 at 2	0 cc. solution 5°C.¢ Nicotinic acid	Biological activity, d as compared with that of nicotinic acid, on—		
No.	Nitro Calcd.	ogen Found	Picrate r Calcd.	itrogen Found	g.	equivalent,	L. arabinosus,	Dogs	
1	13.58	13.51	16.09	16.20	0.062	0.037	0.25		
2	12.72	12.27	15.58	15.61	.014	.008	0.05		
3	11.96	11.57	15.11	15.09	.023	.012			
4	11.28	11.17	14.67	14.58	.018	.009	0.2	• • • • •	
5	10.68	10.67	14.25	14.11	.022	.010			
6	10.21	10.05	13.86	13.20	. 026	.012			
7	9.65	9.56	13.48	13.40	.018	.008	• •	• • • •	
8	9.20	9.32	13.13	13.00	. 036	.014		• • • •	
9	8.80	8.81	12.79	12.35	.020	.008	Less than 1		
10	8.09	7.91	12.17	12.18	.038	.014	Less than 1		
11	7.48	7.49	11.60	11.65	.024	.008	Less than 1		
12	14.14	14.01	16.39	16.38	.016	.010	0.32	Approx. 2/3	
13	13.72	13.39	16.16	15.98	.098	.060			
14	21.09	20.97	19.18^{b}	18.98	.021	.012	• •	••••	

Caluta in 100 on solution

a product of analytical purity which melted at 72.1-72.4°. Melting point of picrate was 151.0-151.6°.

Method B.—A reaction mixture consisting of 61.8 g. of ethyl nicotinate and 70.8 g. of n-decylamine was heated at 214-250° for 190 minutes in a reaction flask equipped with an efficient fractionating column having a reflux head. During the heating period, 10.6 g. of ethyl alcohol distilled from the reaction mixture. The residue in the distillation flask was dissolved in 500 cc. of chloroform and the amide isolated as in Method A. The 90.8 g. of N-(n-decyl)-nicotinamide melting at 69.8-70.4° represented 82.7% of the theoretical yield. After several recrystallizations from chloroform and petroleum ether, the amide melted at 72.2-72.6°.

melted at 72.2-72.6°.

Method C.—Nicotinic acid, 36.9 g., and pyridine, 47.4 g., were added to a 500-cc., 3-necked flask equipped with a condenser, mercury-sealed stirrer, and dropping funnel. Thionyl chloride, 35.7 g., was added to the stirred mixture with cooling over a period of fifteen minutes. The reaction flask was heated on a steam-bath for four hours. n-Decylamine, 51.9 g., was then added dropwise to the mixture. Stirring and heating at 100° were continued for one hour. The reaction mixture was poured into 500 cc. of ice water and made slightly alkaline by the addition of a dilute sodium carbonate solution. The separated amide layer was washed thoroughly with hot 5% sodium carbonate solution and further purified as in Method A. The 50 g. of pure amide, melting at 72.2-72.8°, represented 65.5% of the theoretical yield.

Although the density and refractive index of the liquid

esters were determined, no reliable comparison between the calculated and theoretical values for molecular refractivity could be made, since the empirical value for the pyridyl radical is questionable. Calculations made to establish a value for the pyridyl group on the basis of data previously reported yielded numerical values which were

not in good agreement.

Solubility Determinations.—Solubility determinations on the nicotinic esters were made by the following general procedure. An excess of the ester was added to 200 cc. of distilled water and shaken at 24.0-25.0° for eighteen hours, after which the container was placed in a constant temperature bath at 25° for two to three days. Although it is recognized that these conditions did not necessarily ensure equilibrium, the procedure was considered sufficiently indicative for the purpose at hand. The undissolved ester was then removed by filtration or decantation, and the solubility of the ester was determined by saponification of the water solution. Samples of 10 to 15 ml. and 0.1 N acid and 0.1 N base were used. The aqueous solution was also titrated to determine the quantity of dissolved nicotinic acid caused by hydrolysis. With the one exception of ethyl nicotinate, hydrolysis was negligible for all esters. The solubility value herein reported for ethyl nicotinate was therefore determined on the aqueous solution obtained by shaking an excess of the ester with water at room temperature for one hour and then placing the mixture in the constant temperature bath for two hours. The solubility value for ethyl nicotinate, 5.6 g, per 100 ml. of water at 25°, indicates that this ester is more

^a Previously reported. ^b Dipicrate. ^c With an accuracy of ±0.005 g. ^d Molar basis. ^e Indicates no test.

soluble than nicotinic acid, 1.77 g., under comparable conditions

A saturated solution of the amides was made by the same procedure employed for the higher esters. Amide nitrogen determination was made on the aqueous solution by a Van Slyke procedure. One milliliter of saturated potassium hydroxide was added to 15 ml. of the aqueous sample, and the solution was refluxed for one hour. The hydrolyzed solution was washed into a 25-ml. volumetric flask and made to volume with water, and 1 ml. of this solution was analyzed for amino N by the Van Slyke manometric procedure. Since little or no amino nitrogen was detected prior to alkaline hydrolysis, it was concluded that hydrolysis of the amides by water was negligible.

It was expected that the water solubility of the amides and esters would vary inversely with the length of the *n*-alkyl group. The deviation from this anticipated result may have been due in part to the slight surface activity of the higher *n*-alkyl derivatives.

Acknowledgment.—The authors are indebted to C. A. Elvehjem, L. J. Teply and W. A. Krehl for the biological data herein reported.

Summary

The preparation of ten new esters and thirteen new amides of nicotinic acid is described. Preliminary biological and solubility data indicate these new compounds may be suitable water-insoluble anti-pellagra materials for the fortification of food products which are rinsed prior to cooking. However, the actual merit of these derivatives can be ascertained only by evaluation under conditions of intended use.